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ISOLATED AND CASCADE AIRFOILS WITH PRESCRIBED VELOCITY IIK3TRIBUTION

By ARTHURX. GOLDS~IZINand METEE JERISON

SUMMARY

.4n ezoct solution qf the problem oj designing an airfoil with
a prescribed relocitji distribution on the .w&ion surface in a
gicen w iforraflotc of an incompressible perfect$uid Ls obtained
by replacing the bounday oj the airfoil 6Y rotiices. .E@ this
deriee, a method of solution is dereloped that is applicable both
to isolated airjoils and to airjoils in cascade. The conformal
transformation ~f the designed air-oil into a circle can then be
(ib[a inecl and & relocify distribution at any angle of attack
compufed. .Yumerical illustrations oj the method are giren for
th~ air-foil in cascade.

INTRODUCTION

The problem of increasing the output per stage in axial-
flow compressors and turbines in-rol-res the use of high-
solidity (cIosely spacecl blades) stages of highly cambered
blades. In addition, the -relocity distribution must be ca-e-
fully selected as a function of arc length along the airfoil
(blade section) boundary in order to avoid flow separation or
excessir-ely high local velocities.

Swwral methods me available for obtaining an airfoil with
a prescribed -reloeit-y distribution. The methods that lead to
tbw~rcticaIIy ewtct results me based on conformal-mapping
theor~. (See references 1 and 2.) In reference 3, Mutterperl
extends the method of conformal mapping to so]-re the
problem of computing a cascade of airfoik tith prescribed
~elocity distribution but, for cascades with closely spaced or
I@y cambered akfofls, tb procedure becomes very cum-
bersome. Approximate solutions ha~e been obtained by
placing singularities such. as vortices, sources, and sink in EL
uniform stream. The shape of sections of airfoik in cascade
can also be computecl by distributing such singularities
periodically throughout the region of the cascade, as described
by Ackeret (reference 4).

Because these -rortex methods are not exact, a method
with the vortices on the bounclaries of the cascacle airfoils
was de-velopecl. This method gives a theoretically exact. solu-
tion without. the computation difficulties encountered in
conformal-rnapping methods for highly cambered airfoils or
closely spaced cascades. Furthermore, for the same accuracy
in computing the airfoil shape, this -rortex method requires
the computation of fewer points than the method of eonformal
mapping because these points may be arbitrarily placed on
the airfoil. The methocl may be applied to isolated airfoils
and to airfoils in cascade. For the cascade, the inflow and
discharge ~elocities and a ~elocity distribution on the surface

of an airfoil are gi~en and the shape of the airfoiI is deter-
mined. In some cases, the spacing of the blades is pre-
a~s~ged, ~hich plares a cor&tion 011 the assumed velocity

distribution. Once the airfoiI shape has been evolved, the
velocity distribution may be computed for any angle of
attack by the method described in appendix A. The method
of this paper was de~eloped at the hT.NL% Cle-reland labora-
tory during 1946.

THEORY

OLHZISEOFMETHOD

In reference 5, it is demonstrated that the two-dimensional
potential flow about a body in a uniform stream can be
represented by substituting for the body a sheet of vortices..
along its boundary. The ~ortei strength per arc length at
any point is equa.1 to the magnitude of the ~elocity at that
point. A proof of tkis relation for the case of the cascade is
given in appendk B. The probIem of finding a shape -with
a prescribed velocity distribution w-hen placed in a stream
can then be stated: Gi-ren a vortex distribution, to fkd a
contow which satisfies the condition that. it -will be a stream-
line in the flow fieId induced by the uniform flow and the
-rortices distributed on the contour.

The procedure of finding the shape bebgins by choosing an
approximate shape and distributing the -rortices orLit. The
stream ~unction of the flow induced by the -rortices and the
wiform stream k computed at points on the boundary of
the assumed shape. If this stream function is constant, the
assumed shape is correct. Variations of the stream function
are a measure of the deviation of the assumed shape from
the correct one. These, -radiations are used to distort the
original shape into a new shape whose stream function is
more nearly constant. The process is repeated until the
mriations become negligible. In the process of shape adjust-
ment, the velocity is altered on the pressure surface.

DERIY.4’IIONOFEQ1l.4TIOXSFORTHESTREAS1FLIXCTIOX

Isolated airfoil,-The complex or reflected velocity
w’(z) (which is the deri-ra.tive of the complex potential fun&
tion w(.z)) induced at the point z =z+iy by a -rortex of
strength k located at za=zo+iy~ is

(A summary of the principal symbok used in this reperk is
given in appendix C.)

~~1
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The complex velocity w’(z) induced by a uniform stream
with complex velocity w,,’ and a distribution of vortex
strength per unit length 7 (z,) along a curve with coordinates
2.,is

w’ (z)= w.’+ -s~(z.) ds,
Z—20

(1)

where ds. is the element of arc length along the curve. The
complex potential at tha point z is the integral of w’(z) with
respect to z, namely

w(z) =2wu’+&
J

~(20) log (Z—20) dso (2)

From reference I (notation modified),

V(ZO)ds,=w’(zo) dz.=dw(z,} =dP(z,) +i @(ZO)

where
S3 velocity potential, R[w(z)]
* stream function, l[w(.z)]

W%en equation (2) is applied to obtain the compIex
po kntiid function at any point z in the ffow field, the in-
tegration must be carried out along the boundary of the
body. Because this curve is a streamline, d~= O zmcl, there-
fore, equation (2) becomes

w(~) =~wuf +L
2TZ s

log (Z–,5,) dP(zO] (2a)

The imaginary part of equation (2a) is the stream function
at the point z,

+=–xv,+gvz-+
J

log <(z–x,)’+ (y–y,)’ d~(zo) (3)

1<.here
Vu g-component of uniform stream velocity 1’
1’. r-component of uniform stream velocity V

It is convenient to use the mc length along the airfoil as
a parameter. If (rjy) is a point on the airfoil boundary, then
s will denote the mc length there; similarly, so will denote
the arc le.ngth at ($., y,). The vortex at s. on the airfoil

influences the stream function at the poin L s on the airfoil,
The stream function inc!ucecl a~ (x,y) by a mu.tex of uni~
strength ~t (~., YO)is

-f,(z, ZJ =+ log [(z–d’+ (y–y,)’] (4)

A plot & the (xjy) plane of curves for a constant ~l(z,za)
consists of concentric circles with center at (l., y.).

The velocity at the point so on the airfoil is tlw directiord
deri~’ative p’(%) of the potential along tho streamline.
If the velocity along the airfoil has km spcrifkd and an
airfoil shape has been assumed, the resultant stream func-
tion along the bounclary of the airfoil can bc approximated
by using the approximate shape in evaluating the integral

J
y(s) =+.(s) – ;,(s, SJ ~’(so) dso (5)

o

where ___
Y.(s)stream function at [z,v)due to uniform stream, —siVU+g17z
J total arc length of airfoil
AH variables are expressed in terms of the mc-leng$h para-
meters s and so. The integral in cqu~tion (5) can be evalu-
ated either numerically or graphically over the cntirr range
of integration except in the region where a (=s—s.) is small,
for in this region j, (s,s0) becomes infinite. This portion of
the integral can be evaluated by approximating the airfoil
boundary by a line segment, Thenj

$(s, so)=+ Iog (s–s0)2

The prescribed velocity can be given in this region, which
may be clefined by s —a S sOSs +a, by a Taylor’s series as
a. funcfiion of sOabout the poin~s.

‘~ (s.–s)’+ ~@,$o’(so)=p’(s)+ $0’’(s)(8.—s)+ !2!

where the primes indicate derivatives with respect to s.
The integral is then

In most cases, only the first term need be used in equation (6). The s~me type of approximation can be usc.d to evaluate
a portion of the integral if the opposite side of the airfoil comes in the neighborhood of the point (z,y).

A more general equation applicable to a segment that. does not pass through s is:

1

J {

}L((?-b) +

1
‘~c log [(x—x.)2+ (y–y.)z]p’(s.) d(s.)=$- ~’(p) [c log (h2+c2) —6 Iog (h’+~~) –2(c—b) +21L km-l -&w

~ ~fh T

~~) [(N+ c’) log (h’+ C’)– (/V+ b’) log (h’+ b’)– (c’– b’)]+2!

[
“$’) C3log (h’+cz) –bS log (h2+ &) –; (C3–63) +

9+” ““}
2N(C- b) —2h3 tan-l /j2+ ~c (6a)
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where h is & perpemlicukr distance from s to the segment,
‘s,=p Iomtes the foot of the segment, (p +b) and (p +c)
are the limits of the inte~ation of .sO1and appro.ximatel~,

F’(l) =q’(p+b) –w’(p+w:g’’’(p+b)

q“(p)=p’’(p+b)- bq’’’(p+b)

~“’(p)=~’’’(p+b)

Equation (6a) may be used wheu the line segment is not
of equaI Iengths on either side of the perpencliculcw foot or
when p’(s) or its deri~atives are cliscontinuous at. either
(p+b) or (p+c). If a=c= –b and h=!?, equation (6a)
reeluces to eq uatiort (6). The size of a, b, or c is deter-
mined by the requirements that the segment in question
be nearly straight (the approximation is of the second degree)
and that g’(.so) be accurately represented by a Taylor’s
series expansion of few terms.

Pv. v,

Ex if--veloci?ydiagram Complete -veloci+ dicgram

t;~rro.nce-ve loci@ OtQgram W2’ Wz’ wit
Reflec fed- velocifg dkgrom

FIGrRE I.—Notation for m.scsde flow.

Airfoils in cascade,—The expression for the complex po-
tential for the flow about a cascade of airfoik is deri~ed in
appendix B. The notation is defied in figure 1. The
equatiou that corresponds to equation (2aj for isolated air-
foik is for a cascade of airfoils

where

Wm’ mean stream velocity, which is one-half the sum of
complex (reflected) velocities upstream and down-
stream of cascacle, l“=—il”~

S distance between successi~e airfoik in cascade
The mean -relocity w.’ corresponds to the uniform velocity
w.f of thi isolated airfoil flow.

The term zw~’ is the complex potential function resuhing
from the mean flow. In the integral, the ekment dp indi-

cates the vortex-element strength and log [sin (F/S’) (.z-zJ]
represents the complex potential at the point z causecl by an
infinite row of unit vortices at ze&nS’ where n=O, 1,
7 . . .. The imaginary part of equation (7) is the stream
;Lction,

is expressed in are-length parameters and ~m(s) is the stream
function at (r,y) inclucec] by a mean stream w-hose complex
Telocity is u’~’; that isl

The values of (r-zo)/S ancl (.y-.yo)/S for various values of -fZ
are gi-ren in table 1. .% plot of r-.ra and y-y. for constanfi
values of Y1(z,z.) is shown in 6gure 2. These cur-res may be

f2@-%> If-Y.][v-? Jo)

0.3

) (x -XJ

.2

by an
points

interpreted as the streamlines of the flow induced
infinite row of vortices of unit strength located at the
(r~+n~, y.), where n-=0, 1, 2, . . .. In the region of a
-rort ex, the streamlines are near~-y circles; that is, the flow is
nearly that indueecl by an isolated vortex. At a distance
from the vortex row, the streamlines are parallel lines, as in
the flow pattern incluced by a continuous uniform clistribu-
tion of -iorticit.y along a straight line instead of a row of
discrete vortices. The ~elocities on the two sides of SUCh a
-iortex line are of equal magnitude but opposite in direction.

This behavior off, for large ly–yo\/S and also for small
(y–yo)’+(r–ro)’

s’
can be described as foflows: When both

(z–.r.)~~ and (y–y@)/~ are smalI,

which differs from ~1(z, ZJ ordy by a constant. For large
values of ]y—yOl/,S, irrespective of (x—ra)/S and a constant
term,

(10)

which is the stream function of a uniform stream parallel
tO the .r-CfXiS
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Equation (8) can be used for computing the stream function along the boundary of an airfoil in cascade just as
equation (5) is used for the isolated airfoil. The integral over the range in the neighborhood of the points is obttiined bj
using equation (9) for .tz (8,s.). The result, derived in the same manner as equation (6), is

n-
J ~ ‘ [ F- )-’l+a’v~og(w-+l+ ‘ ~ “ }

,: f2(s, so) /(s.) also= (’9-(s) h ~ CL (W)

The more general equation (6a.) is modified for cascades by
multiplying the argument of all logarithms by the factor
7r2/J!Y.

ADJUSTiWEHT OF SHAPE

If the siream function for the assumed airfoil has been
computed and has been found to vary, the shape mus~ then
be adjusted to give a more nearly constant stream function.
The shape changes are made by rotation of the body plus
displacement of the individual points normal to the mean
stream. The rotation is used to place the front stagnation
point properly,

Rotation of the airfoiL—In the formula for computing the
stream funefiion of an isolated airfoil, the contribution of a
vortex elemeut at (2., yO) to the stream function of a point at
(r, y) is dependent merely on the distance between the two
points. Consequently, if the entire zirfoil is rotatecl, the
effec%of the boundary vortices on the stream function at any
point on tbc airfoil boundary WN not change. The effect of
the blade rotation on the stream function along the boundary
is therefore determined by the change in relative position of
the points in the uniform stream. The first adjustment in
shape is a rigicl rotation of the airfoil in order to obtain a
more nearly constant stream function along its boundw-y.

If the airfoil is rotated through an angle P, the stream
function is so changed that 4 (s) is a function of 6 and s and

may be written ~ (sl @. When ~=0, L (s, 0) is the original
stream function before rotation. After rot ation the new
stream function 1 (sl @ may be expanded in a TayIor’s series
aboufi the point 8=0,

+(s,/2=+(s>0)+6 [Q&q=o+~. .
Only the ~st two terms i~ this series will be used because P
is assumed to be small. The angle j? is to be dekrrnincd for
the minbum mean-square deviation of the stream function
from its mean value. Because the object of the rotmtion is
essenti@ to adjust the shape of the nosej the rotaiicm might
also be made to reduce the root-mean-square deviation of the.
stream function to a minimum for a portion of the shape
including the nose.

The mean value of the stre$m function at any angk 9 is

The difference between the new- stream function Y (s, @ and
its mean value ~ (@ is squared and integwted LOobtain a
measure of the variation of ~ (s, 13)from the mean value at
the new angle. The conciition for obtaining a minimum
root-mean-square deviation by adjusting P is

c1 (iJ(s,o) -J“[w) –W3)]zds=-$( [KS,O)+B ~–O=zfi~ W]zds
—~’ z[Y(8,0)+D ‘4$%(P)] ~$o) -%)] ds

‘s [

d+(s,o) –. .2 ,’ ‘* +(8,0)+P ~ –Y(P)] ds–

d+(s,O) –
2 ‘#( [W) -l-P ~– J(P)] ds

The second integral vanishes by virtue of equation (11),
which may ako be used to eliminate ~ (P) from the remaining
term. The solution for P is

s‘“(s’ Wds-w%’dsl[ldwdsl (,,)/3=” ~

~ Owd’l-LRwP’[s

In order to apply equation (14), dl/dP must bo known at
points along the boundary of the airfoil. For the isolated
airfoil, the contribution of the vortices is unaffected by the
rota tion and therefore

If tke airfoil is rotated about the point (rc, yJ, equation (15)
becomes I

(12)

(13)

$= Cos p [(x—xc) Vz+ (u—y.) v!/1+

sin B [(x—x,) V,- (y—y,) T721 (16)

where (xl y) are the coordinates of the poinb before rotation,
For small values of P, equation (16) reduces to

~= (x–z,) v.+ (g–y.) v, (17)

The choice of (r,, y,) will have no effect ODthe results in ilk
case.

IVhen the airfoil in cascade is rotated, the chtmgo in tho
position of the vortices of the adjacent Made musL be con-
sidered, For the isolated airfoil, it was unnecessary to con-
sider the change in position of the vor~iccs because the
influence of a vortex (equations (3), (4), and (5))=depended
on the functional, which is constant on circles. The infiucnce
of the vortices on the airfoil is therefore independent of
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direction. Because the fa contours are nofi circIes, the rota-
tion in cascade does lia~e an effect, which is approximated
by considering alI cIosecI fz cu.mes &<o) as circIes in order
that the effect of aIl -iortices in the region ja<o may be
negIected du”ing rotation. The effect of aLl ~ortices in the
regionfz>O is estimated by assuming that all thefz contours
for j,>O are straight Jines uniformly spaced. The flow
corresponds tcI that betm-een two i.nfkite straight parallel
vortex sheets of uniform strength per unit length. This
flow induced by the vortices in the region j,>O is in the
r-direction, and the direction of the flow induced by the
vortices for which y.>y is opposite in sense to thafi induced
by the ~ortiees for -which yo<y.

.}s the point being considered is changed, the regions for
f~>O, y~>y, and f2>0, Y,<Y w-HIinclude diflerent sections
of the blades, and hence different vorticity, mith the result
that the z--reIocity component t~=induced by the ~ortex
sheets will miry with the point. under consideration. The.
aIgebraic sum of the r-component of the uniform flow-
velocity cmd the variab~e x-velocity r= induced by the ~-ortices
in the region f2>O is to be used like the velocity component
1’= in rotation of the isolated airfoil (equation (17)). The
quantity T“, in equation (17) is repIaced by the corresponding
1“x,,= T“=+r=. The vortex strength per unit length at. any
point, on the airfoil is equal to p’ (s.) and, therefore, from
equation (10) the z-component of the velocity incluced by the

1

-.
vortices is & p’ (s.) dsO, where the inteagy-ation is carried

O1lL over tie ‘portion of the airfoil where j2(s,s,)>0. ~
distinction nmst be made between the two regions y.<y and
yO>y because the induced -reIociky components have oppo-
site dircwtions.

The computed result of rotating a~ airfoil in cascade de-
pends upon the choice of (rC,yC). In order to minimize the
error in-i-oI-red, values of d#/d@ are reduced by choosing
[x.,yc) as the centroid of the -rortex distribution on the airfoil.
If the improvement in the mean-square detiation of @ is
sma~ compared tith its origtial mduel it may be preferable
to omit the rotatioD of the airfoil because of the error inherent
in the approximation for &~/d~. The decision should be macIe
chiefly on how ~ -raries at the airfod nose and whether it. is
approaching a constant -ralue in this region with successi~e
corrections of the shape.

Ilktortion of the shape,—The stream function computed
after the isoIat.ed zirfoil has been rotated m-ill, in general,
st.ilI ~ary aIong the boundary. This variation can be re-
duced by distorting the shape of the airfoil. If the distor-
tion is small, the change in distance between any two points
on the boundary w-iIl be small, although the change in the
direction of a segment. joining those po-mts may be consider-
able. The effect of the distortion on the contribution to
the stream function of the vortices on the boundary is
consequently neglected. The largesti effect of the distortion
wi~l be to change the position of the boundary points in the
uniform stream. The airfoil is therefore distorted in such a
manner thak the change in the contribution of the uniform
stream to the stream function wd.1 eliminate the ~ariations
in stream function. For points directly opposite each other
on the airfoil, the change in distance. will be of the same order
of rnaatitude as the distortion. Consequently, distortions

that resuIt in change of thickness of the airfoil con~erge
~ery slowly be~ause of the inaccuracy of the fundamenta~-
assumption orLwhich the correction is based.

Thus, when the stream function along the boundary of
the isoIated airfoiI is know, some number is arbitrarily
chosen as the desired constant ~ake of the stream function.
If AX=$–~ is the difference between the computed stream
function at a point and the desired constant, the point is
moved a distance —A#/_t” perpendicular to the direction
of the mean stream, where the direction of inc~easing uni-
form stream function is Mien as positive. The airfoiI in a
cascacle is distortecI in the same reamer, by using the varying

resuItant Iocal mean stream veIocity ~~l’Z,,z+ I’rz; corrections
are made m-ith ~ equal to the mean value of ~ on the airfoil.

COMPUTATIONAL PROCEDURE FOR CASCADES

CHOICEOF~ELOCTTYDISTIUBI?TIOX

Several factors influence the choice of the ~elocity distri-
bution for which an airfoil is to be found. Especially in
rotors, sturdy bIades are recluired. Long thin tail sections
must be avoided and where high rotati~e speeds and stresses
occur, overhang of thin sectiom k likely to induce blade
failure. The radkd distribution of airfoil cross-sectional
area is also fundamental in determining the bIade-root
stresses. Owrhang can be reduced b? proper choice of the
velocity diagrams for the sections} but the other factors are
influenced chiefly by the thickness of the section.

The desired thickness may be attained by first assuming a
blade shape and spacing and by then using the stream-iilameut
method of reference 6 to compute the velocity dis’wibution
orer a portion of the airfoil that determines the thickness.
The spacing ma-y be regarded as fixed but, the curvature can
be adjusted if local velocities are too &~h for the desired
thickness. This computed -reIocity will then sem-e as a
guide to the choice of an airfoil veIocity distribution, which
should be chosen to a-i-oid high ~elocity peaks and steep
negati~e gradients. If the average of the velocities on
opposite sides of the blade camber Jine is retained in th{-
modiflcation of the veIocity distribution computed from the
siream-tilament method, the thickness will also be retained.

Because of the irrotationality of the fluid motion, the
~elocity integral or circulation arouncl the airfoil must be
equal to tkt- around a blade but owr a width equal to one
blade space. Therefore,

J
~’ (s) ds= 17= S(V., 1—V., z]

where
r’ circulation about airfofi
T7Z,I t angentiaI velocity entering cascade
1-=.2 tangential velocity Ieaving cascade

This relation places a condition on the assumed ~elocity
cfistrib ution.

If the computations thus far ha~e been made in order to
select. a velocity distribution for the airfoiI cascade in a com-
pressible fluid flo~, an equivalent velocity distribution for
the flow of an incompressible fluid must be determined
before the blade shape can be computed by any method
based on incompressible-flow theory. For subcritical flows,
the directions of the inflow and discharge ~eIocities are
nearly the s~me for compressible artd incompressible flows,
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but for incompressible flow the component normal to ciascade
axis is the same upstream and downstream. The KArmtln-
Tsien compressibility correction (reference 7) or that of
Ciarrick and Kaplan (reference 8) mtiy be applied to the
velocity on the blade surface to estimate. roughly the c.orres-
ponciing incompressible-flow velocity distribution. The re-
suIting velocity distribution in any case must satisfy the
circulation condition. This procedure does not give cm
exact soIution for compressible ilows~ but the resuItant c.om-
pressibIe Bow will have approximately the desired char-
acteristics of low pressure gradients and no high velocity
peaks.

COMPUTATION OF AIRFOIL SHAPE FROM THE CHOSEN VELOCITY

DISTRIBUTION

The numerical computation of the quantities involved in
the preceding analysis, particularly the function f~, is ex-
tremely laborious when tables of ~Z(s,sa) are used. hIost of
the computations are therefore executed graphically. In the
cascade example, the air was assumed to enter the cascade
at an angle of 45° from the cascade ask and to leave at an
angIe of —30° from the cascade axis. The prescribed veloc-
ity distribution is given in figure 3(a), The value of the lift
coefficient for this airfoil is 3.1, The shapes of the isolated
airfoil and the airfoil in cascade are computed by the fol-
lowing steps:

2

[
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(s) lnitizl airfoil.

(h) Final airfoil.

FIGURE 3.—Prescribed wIocity distribution for thick air[oil in cascade.

1. (lurves for constant ~1 for the isoktecl airfoil, or con-
stant jl (fig, 2) for the airfoil in cascade, are ckawn. This
diagram should be made on some transparent material that,
will change neit,her in size nor shape, The coordinates of the
curves for constant fi are given in table I.

2. ~ desired velocity p’ (s) k. chosen as a function of the
arc length of the airfoil (fig, 3 (a)). An airfoil shape having
the desired total arc length is assumed and is drawn to the
same scaIe as the plot of ~1 or f2. The drawing is made on
grid paper and, in the case of a cascade, the x-axis coincides
with the cascade axis (fig. 4).

3. The veIocity clistribu Lion p’(s) is integrated to obtain
the velocity pote~tial p(s). This function is plottecl on the

same chart as the assumed airfoil shape for ihc corresponding
y-coordinate, as shown in figure 4, by ploiting both P and

P
Y
< r

o P
FIGURE 4.—Pl0t of airfoil and velocity potential for usein computation.

the y-coorciinate of the airfoil against s on a supplcnwnkry
graph. In regions of the airfoil where y varies li~tle with s}
that is, where the airfoil bcnmclary is parallel to the z-direction,
p should be plotted against x in the smne manner, as shown
in figure 4.

4. In order to fincl the stream function a~ CLpoint (x,y)
on the airfoil, fz(s,s.)must be pIotted as a function of Q(SJ
to evaluate the quantity Jj,(s,sJ dp(.s,) of equaiion (8).
If the chart of j? is superimposed on the airfoil with one vor-
tex center overlying the point (zjy), the value of f2 Imy bc
read at (za,yo) and the corresponding vaIue of w(x,,YJ may
also be read from the plot of q(~olyo). The valLle of .fZ(s,sa)
is the same as would have been obtainc.d by wnLeling the
chart OR (r~,y,) because of the symmetry of the function.
A succession of values of p and.~z are obtained in this fiishion
for various positions (zO,yO)that intt~rsect the j2 contours,
and a plot of these points (fz, p) may be made for the assumed
position (.z,y). This procedure is illustrated in figure 5 for
a particular point (x,Y) on which the f~ chart is wnkcd.
The reacIings for a particular (x,j,y,) are shown by the arrowed
lines. The points 1 to 6 on the Macle arc shown on the
corresponding j2 curve. The discontinuity of p between
points 1 ancI 6 is the. circulation. The discontinuity bct~vcwl
4 ancI 5 represents the region where ,T2approaches — ~.

5. The proper method of integration then procwck from
1 through 6 to 7 anc~ then to the origin, with constanL ~j
from 4 to 5. The region from 4 to 5 with jz approaching
— co is computed by equation (6) or (6b); the consttin La is
assumed to be the radius of the near-circk, which corres-
ponds to the wlue of fjwhere the clisconii~uity
5 occuB..–

The totzl area including this small aclc]ition is

s J
~’(s.)fz(s, s.) ds= fZ(.s,sJ dp

from 4 to

which is the stream function due to vortices on the entire set
of airfoils in cascade. Where fz=O at the points A, B, C,
and D (fig. 5), the vaIues of P are noted m PA(S), p~(s), CPC(S),

and q~(s). These values are used in computing the stremn-
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function change caused by rotating the blade. The stream
function at the point (x, y) may now be computed from
equation (8) or (5), and

+,%=– I’,x+ V,y

\ /

-5

2-- .A

@MIiiE??

&

—

3

2
-.2

-.3

/’”

FIGCRE 5._<uper~sition of figures ‘2and 4 to obtain plot of~a against W.

.4 plot of the stream function (~ariation from the mean
-ivdue) is shown in figure 6 for the initially assumed shape.
Corresponding points on adjacent airfoils kia~e a difference
of A.#/T”vs equal to 1.0.

6. When 1(s) is known at a su.flicient number of points,
the airfoil may be rotated as preciously described. For the
isoIated airfoil, equations (14) and (17) may be used directly.
For the airfoiI in cascade, the coordimtes of the centroid of
the airfoil must. first be computed by

Before equation (17) can be used to compute d#/d/3,the m_ri-
abIe quantity ~’=,, must be computed. The vortices in the
regionf2>0 are considered to be uniforndy distributed along
the cascade zti and the -relocity induced by such a distri-
bution is

where y is the -rortex strergth per unit Iength along the cas-
cade axis for fz>O. Therefore,

1

“=X2 J
~’ (s.) ds~

where the integral is to be taken o-rer the regionsfz>O. The
region fz>o, gO>y contributes a positive componen~ to %,
whereas the region fz>O, gO<g contributes a negative com-
ponent. The computation is simpIy carried out by making
use of the fact that the inteagral for U.is the dil’ierence between
values of Y at points where fz=O. The values of YA(~@),
~~(s.), ~C(SO),and ~D(sO)from step 5 are used at this point

to obtain

where I’ is introduced because of the (Discontinuity in P aL
the trailing edge. The sum p~–p~+ I’ gi-res the effect of
the vorticity in the region fa(s, so)>0 near the trailing eclge,
and the term PC—pE gi~es the effect of the vorticity in the
region fz(.sl.s.)>0 near the Ieading edge. If either the leacIing
edge or the traiIing edge Lies in the region fz(s,s.) <O, only
two points of intersection mill remain and one of the two
groups of terms in equation (1S) wilI Yanish. The quantity
1

TS s
p’ (se) dsO is added to the x-component of the original

uniform stream velocity and the quantity d~)d~ of equa-
tion (17) may be computed for a number of points ancl the
angle @Complltedfromequation (14), us,h~ the values of (~.,~~

jusfi determined. Mter these computatiom~ have been made,
the airfoiI is rotated through the angle p, and the vaIue

4+B: is assignecl as the wke of the stream function of

the point after rottition.
7. A -raIue of +(s) is known at points along the airfoil

bounclary. The mean value over the airfoil 7 is subtracted
from * lea~Q@ A~. For the isolated airfoil, no subtraction

A#
is necessary. Each point is moved a distance— ~

\ T“.,,~+ T“yz
in the direction perpendicular to the -relocit.y co”mputed in
step 6. The curve joining the points in their new positions
is the adjusted airfoil.

8. The total arc Iergth of the adjusted airfoil will be
different from the originaI one, in general, although local
changes in Iength -wiI1be negligible. The airfoiI k so scaled
that the length of the suction sicIe is the same le~gth as it -w-m
before distortion because this surface is the critical surface
of the airfoil. This process will result in a change in length
of tLe pressure side. The velocity over the pressure side q’ (s)
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must then be altered in such a manner that the clifference
in potential between the two stagrmtion points remains the
same. As a result, ihe quantities that retain specified vaIues
are the Iength and the velocity distribution on the suction
side and the circulation around the airfoil. The entire
procedure is repeated with the adjusted shape until the
variations in the stream function result in very little change
in the shape of the airfoil,

DISCUSSION OF EXAMPLES AND TECHNIQUES

For the example being computed, the stream functions
obtained for the initiaIIy assumed shape and the first ancl
seventh approximations are plottecl against the arc length
(fig. 6), which is taken as zero at the trailing edge ancl pro-
ceeds counterc.kckwise around the airfoiI as shown in
figure 7. ‘I’he fact that At for the initial shape is positive
over the first half of the arc length and negative. o~’.er the
second half indicates that it is too thick beca,use the required
distortion in shape wiII make it thinner. The chamge in
thlclmess restdts in a change in velocity distribution over the
pressure side of the fiirfoil in order to maintain the desired
circulation, The veIocity that, was originally assumecI,
which is equal to the -rorticity per unit length distributed on

‘----- lr7i+ia/a{rfoi[
— Final ~i~foi/

FIGURE 7,—Initial shape and final approximation of thick airfoil showing cascade spacing.

the initial airfoiI, is shown in figure 3 (a) and the veIocity
over the final shape in figure 3 (b). The length of the
pressure side has increased and the ve]ociiy has decreased
in the portion of 1:1,1.

Over the section of the airfoil that has collapsed to zero
thickness, the surface velocities of figure 3 (b) may not havo
been obtained, but the loading (circulation per unit arc
length), which is the difference in the velocities on opposi@
sides, has been reaIized. In practice, this collapse is pre-
vented b-y increasing the assumed velocity on the airfoil
surface.

If the initially assumed airfoil shape hm a thickness that
differs considerably from the correct one, the process of skapo
ac{justment wiII converge rather S1OW1Y, The Iabor can bo
reduced, howeverj by computing the stream funciion at a
few points on the airfoil and locating these points to detm-
mine. the thickness. This procedure is followed for the first
few approximations untiI the thickness of the airfoil is fairly
accurate. The stream function is then cornputw~ at. a
larger number of points, part icuIarly near the leading edge,
in orcler to get more detaiI of the shape.

Arbitrary specification of a veIocity distribution may
result, not in a physically reaI airfoil, but in a figurc-8
shape or a collapsed shape (zero thickness over a por~ion of
the blade). The velociby clistribution must then be modified
to obtain a real shape; these modifications should bo selected
to keep the desira.bIe properties of the origkaI distribution,
velocity peaks and steep velocity gradients, which tend t.o
occur on the suction side of an airfoil, ~re to be avoidccl.
If the airfoil collapses, the vorticities of the two sides temI to
canceI each other and the remaining vorticity represents the
difference in velocity across the thin airfoiI rather than t.hc
velocity along the boundary.

The method was dso applied to the design of a thin airfoil
(camber line) in a cascade. The vortex distribution is
equivalent to load distribution (clifference in vclo.cily across
the airfoil) rather than velocity as in the. case of a thick
airfoil. The velocity diagram for the cascacie and the desired
Ioad distribution for the thin airfoil am shown in figure 8.
The value of the lift coefficient of the resultant. airfoil is 4.1.

. I , ! ,, , !

FIGURE S.—Velocity diagram for cascade and prescribed load distribution for thin alrfoIl h

cascadt.
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The initiaI shape was obtained by assuming zero spacing
between the airfoils. The initial shape and the first and
third approximations to the airfoil shtipe are shomn in figure 9.

. . . . . . . ..-
—.—

tnif[a[airfoil
firs + approx(mafim
Thi~dapproxnmaf[on

The second and third approximations differ ~ery lit tie.
The third approximation is redrawn in this diagram to show
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the spacing betweeu airfoik. The eon~ergence of the method
is shomn graphically in figure 10. The m-riation A$ of the

Fm~F. 10.—Tariation in stream function for -mmce.%iw approximation or thin &foil in

cxwmde.

stream function from its mean is divided by T“S to make it,
dimensionless and is pIotted against the arc length aIong the
airfoil -where $=0 at the trailing edge. The stream function
computed on the second approximation is nearly constant,
which gives the third approximation almost the same shape
as the second one. The rapid adjustment, of camber con-
trasts tith the slow adjustment of thickness.

FLIGHTI PROPULSION 13ESEARCHlABORATORY,
hTATIONAL.ADVISOEYCOUWTTEE FOR .4ER0N-AUTICSl

CLEVELA&m,OHIO, .Wwch J, 19-47.
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APPENDIX A

VELOCITY DISTRIBUTION ON THE DERIVED AIRFOIL AT’ DIFFERENT FLOW ANGLES

Conformal mapping. —ll’hen an airfoil is gi-ven, the ve-
locity distribution over its surface must frequently be found
at different wagIes of attack. This problem may be soIved
by the method of conformal mapping, which consists in
mapping the region exterior to the airfoil on the exterior of
a circle. The velocity arouncl the airfoil is obtained from the
known velocity around the circle. Proceclures for finding
~he function that maps a given airfoiI into a circle are pre-
sented in references 1 and 9 for the isoIat eci airfoil and refer-
ences 3 and 10 for the airfoil in cascade.

In general, the procedure for finding the mapping function
of an airfoil is a laborious one. But when, as in the present
case, the velocity distribution over the airfoil at a particular
angIe of attack is known, the correspondence between points
on the airfoil and on the circle, and hence the flow velocity
at other angles of attack, can be obtained very easily.
Incleecl, the correspondence of points and the velocities for
various angles of attack can be obtained by the method given
in reference 11 from the initial data without knowing the
airfoil shape, because the complex potentials of the airfoiI
plane and the mapping-circIe plane are equal. Before the
airfoil is designed it is therefore possible to check whether
the airfoil to be computed wiII be satisfactory under condi-
tions different from the design conclition.

Isolated airfoil,—The flow about any airfoil shape can be
mapped on the flow about a unit circle in such a way that
corresponding points have the same potential. The flow
about the airfoil is given ancI the potential function p (.s) at
each point is computed. If the potential function on the
airfoil is computecl by integrating the velocity from the
stagnation point at the trailing edge in a counterclockwise
direction around the airfoil oriented as in figure 1, the poten-
tial will be zero at the trailing edge, decrease to a minimum
p~in at the stagnation point at the leading edge., and then
increase to a value equal to the circdation I’ at the trailing
edge. The corresponding flow about the circIe is determined
by the conditions that it must have the same values of P~~.
and r for a correspondence to exist between all airfoil and
circle. points< If O= is the central angIe of the stagnation
point on the circle that cor.responcls to the traiIing edge of
the airfoil,

Tpmin
—= – (cOteT+eT+T/2)

r (Al)

Equation (AI) can be solved aumericalIy for (?Tbecause all
the other quantities are known. The velocity ah infinity in
the circIe plane V, can then be determined from the Kutta-
Joukowsky condition, which requires that 6~ be a stagnation
point; that is,

v,= - !
47rml 8T
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The velocity poteni,ial at points on the circle is

ro r
pC=—2VC COS 6+~+2J7, COS 6T—~6T (A3)

The quantity 2~7. cos t’=-~~~ is a constani that is subh’acted

in order to make pc=O at the stagnation point mrrcsl)otld-
ing to the trailing edge.

The correspondence of points on the airfoil with points on
the circle is obtained ‘by associating points where p (.s)=PC.
The velocity on the circle at a uniform stream flow angle a is

7J,(8,C’)=2V. [sin (e+ a) —sin (t?l-+ a)] (,44)

The nature of the conformal tr~nsformation is surh tha~ the
ratio of the velocity at a point on the airfoil to the velocity
at the corresponding point on the. circle is independmt of
angle of attack. Therefore, the velocity pa’ (.s) on the uirfoil
at flow angle. a is

%%’(s)_ p’ (s)
V.(e,a) V.(ff,o)

(.45)

where the design flow angle is taken as zero. Equation (A5)
can be usecl to compute the velocity distribution on the air-
foil except at the two points that were stagnation points at
the design angle of attack.

Airfoils in cascade,—The flow about a cascade of airfoils
can be mapped conformalIy into the flow abou~ a unit circle
with two singular points located on the real &xis scymmctri-
cally with respect to the centzr of the circle. These singular
points corresponfl to the poinb at infinity in front of and
behind the cascade, respectively. In a cascade of airfoils,
the distance of these points from the center of the circle is
uniquely determined by the same conditions lht determine
the flow about the circle in the isolated cme; name~y, the
circulation per airfoil, the veIocity potential at the Ieading
eclge, the blacle spming, and the upstream ancl downstream
flow angles.

The distance from the singular points to tl.w cellter of thti
circle is_denoted by eK. The flow abouti the circle- is such
that the location of the stagnation points 6, is determined
by the relation

r sin $, , Cos 8s .-.
—~~7s=si& K Cos ‘Tcosh K ‘ln h (A6)

-where k is the angle of inclination of the mean st~cam to the
normal to the cascade axis. (See reference 6 for detaiIs.)
The quantities F, V, S, and x are known from the flow h
the cascade pIane and therefore equation (i46) provides d
relation between K and the location of the stagnation poinb.
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The velocity potential at any point on the circle is

(.A7)

where & is tb~ pa,rticuhw value of d. corresponding to the trailing edge of the airfoil. The expression in brackets is a
constant so chosen thtit the potential w-ill vanish at the stagnation point corresponding to the trailing edge of the airfoiI. In”
order to map the cascade on the circle, K must be found so that the vaIue of qC,Cat O%.,the stagnation point. 6~corresponding
to the leading edge of the airfoil, is equal to q~tz, the value of the velocity potential there. The identifiy

(S&J , ‘ti2K+(=k)’cOs-’
isused to eLiminate ‘-~ from equation (.A.6) to gi-re

r /

()
r’

sin 8, —z~’s— COSVK sin kkcos h 1coshz K—cosz k— —
1 .~~’s cosh~ K siti~ K (As)

sinh h’= COSy- K— COS2h

In successive approximations, a -raIue of K is assumed and equations (.15) and (.46) are used to find *K ~~,

%2 and c-<”
These -raIues are inserted into equation (~7) to find qC,cat 6=6M. If g.,,(8N) is not equal to p=~%,

another due of K is chosen, on the premise that P,,,(t?.v) mill decrease as K k decreased. When p.,.(d.v) is e-raluated,
care should be triken tO use consistent ~aIues of the ~~erse tangents. .4ft.er two values of ~’ and p.,,(e.i-) are cletermined,
interpolation or extrapolation may be used for ne~ -raIues of K.

When h’ has been founcl, it is used in equation (.%7) to e~aluate pC,Cat values of 6 all around the circIe. .4 point on
the circle corresponds to the point on the airfoil where q(s) =PC,,. The ~elocity at the point @on th~’ circle is

1’s sinh X
‘c’‘= F cosh 2.K—COS20 [(

Cos k
C%-%i%)’si’’(%$-=f)l

and the velocity pm’(s) on the airfoil at any other mean
flow angIe k+cz is

(Ale)

as in the case of the isolated airfoil.
The designed airfoiI was mapped on the unit circIe by the

method described. The constant K, the nat WW_IIogarithm
of the distance from the sin@ar points to the center of the
unit circIe, is 0.07.5. The correspondence between points
on the airfoil ancI those on the eircIe is plotted in figure 11,
which shows the arc length of the airfoil as a function of the
central angle of the circle. The -reIocity at. any- point on the
airfoil for any angle of attack a may be obtained from
equations (.%9) and (.410), the ~elocity distribution as in
figure 3 (b), and the relation betweens and @as in figure 11.

y’(s)
The ratio —‘v,.c(e:k) is equal to d8/ds (radians) and need be

computed only once for any given airfoil.

(A9)

I
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FIGGRE il.—Correspondence between points on airfoif and points on unit circle by conformal

tmmformation.



APPENDIX B

DERIVATION OF THE CASCADE EQUATION

An equation is to be deve]opecl for the complex veIocity
at m3T point in the field of flow of L-Lfluid past a row of equally
spaced, congruent bodies. Coordinates axes are chosen with
the origin inside one of the bodies and the z-axis in the
direction of the row. (See fig. 12.) The body containing

R 1
I

FIGURE12.—Diagram for derivation of equation for flow about eascwlc.

I

the origin is denoted by BO, bodies along the posit,ive di-
rection of the x-atis by Bl, Bz, . . ., and along the negative
direction of the x-axis by B_l, B_z, . . .. A circle A of small
radius is drawn about the poin~ z where the velocity is to
be determined. A rectzmgIe R is drawn with its cenkr at
the origin and its sides parallel to the axes of length (2i17+l)i3
and width 2t, which cent aim the bodies 13_~, . . . l?.l~
B,} B,,-. , . B~, and the circle .4. If a side of the rectangle
interse.c.ts one of the bodies, the side may be distorted to go
around the body with no ess~ntiaI change in the proof.
The function w’ (zO)/.zO–z) is an analytical function of z in
the region inside the rectangle R bui outside the bodies B.
and the circle -4.
Therefore

The first integral can be broken up into four integrals,
one ~long each side of the rectangk, nandy,

J
w’(%) 520=

J

(N+w)s ‘w’ (~o_~~)

J

t W’[(N+ 1/2)!5’+’i~~l ~dyO+

J

-(N+M2MWI(*0+ ~~)

J-

–~W’[— (N+ 1/2)s’+ i’yo]~yo

R ZO— Z
dx,+

– (N+l/2)s’ x.—it— 2 -- _t (N+ l/2)LS+iyo— 2 (N+l/2)S Xo+zl-zdx”+ , – (N+ l/2)~+ i?Jo-Z

In an evaluation of these integrals, the function w’ (z,) is
periodic, with period S, and approaches a constant value I
infinitely far from the cascade; that is,

w! (Xa+ iyO)4w2’ as y04 CQ
and

w’ (xo+iyO)~wl’ as yO-+—m

J

(N+l/2)s~f ($o+y)

-(fv+l/2)’gx,.—it— z

The first of these integrals is

r m~l/2js

(B2)
From the last of these conclitions, it follows tha~

W’($o—it) =w3’(2&it) +?.O1’
where..

w3’(zO—lt)~0 as t~w

Therefore, the first integml on the right side of equation
(B~) is

J

(N-i- 1/2)s dxo (A.+1/2)S C/&t (Xo– ~t) dxo

dx,=wl’
+ J-(w/2)– (J\7+l/2)~ Xo—it— z s To—it—z

J
dxo

Wif ‘“”
[(AT+ l/2) S–it–z]

= Wlf log
-(N+l/2)s Xo—it—z [– w+ l/2)s–iK>] ‘~wl’

as AT* ~ and t+ ~, provided that t/(N@ ~ O. The Iasi integraI-in equation (B3) is

r(N-tw)s oJ)3f(Xo+
— (-ho= %

J

(?2+1/2)8Wq’ (X,—it) &O

J -(N+l/2)s Xo—it — z n=-N (.-1/2)S ~,–~t-z

s/2 W3!(Xo—.it) d20
.

.~N S-S/2 X,+ flS-%t-Z

J J

LS722(z0—it—z)wa’ (x.—it) dxo42 w~’ (~o–it) dza+~. _8,2 — (xO_it_z)Z-–n2&
.

–~p Xo—it—z ~=1

(Q3)
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If t is chosen sufficiently Iarge so that Iw3’(ra–it) I<e, where e is an-y preassigned positive number, the moduli of the integrals
a~e Iess than

when iv-+ CQ,this quantity approaches

This integral is finite and, because e can be made arbitrarily
small as t-o, the Iast integraI in equation (B3) approaches
zero. Therefore,

conditions,

The second and fourth integrals on the right s;de of equa-
tion (332) ‘can be evaIuated by combining them. Because
w’ is periodic,

.

‘W’[(N+ l/’2)s+iya] =20’[— (N+ l/’2)s+ig,]

and therefore,

The velocity w’~(~lT+1/2) f7+iyo] is bounded for all values of YO; that. is, there is a constant T such tha~
[w’[(.h7+ 1/2)s+-i3/o]l <n”. The absoIute value of the integraI is less than

.

As t-+ ~ and ~~~0, this quantity approaches zero. It has By the resicIue theorem,

been shown, therefore, that. -when t-+ m and &~~O,
J

w’ (Zo)
— dza= %+w’(z) (W . _~zo—z

I
- ll~f (Z?)

— dzO~ti (w,’ + w,’) (B4)
~ R ZO—Z The perioclicity of w’(z) impIies that

IS .\T+ m .

Ti_heDequations (&t), (B5), and (B6) are substituted into
equation (B 1), the expression for the complex YeIoeity is
obtainecI:

1
f

r 20’(2.) cot : (L.w’(z) =; (WI’+W2’) —~ ~g~ - —z) dza (337)
..

The compIex potentiaI is obtained from equation (B7] by
integrating with respect to z ancl neglecting the arbitrary
constant,

w (z)= -mm’+L
J2& B,

w’(.zO)10~ sin ; (z—z.) dzo (BS)

WIr+-wzf.
where w~r = ~ IS the mean stream velocity.
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APPENDIX

SYMBOLS

The print.ipa.l symbols used throughout the report are
Iistdhereforconvenience ofre.ference.

natural logarithm of distance from singular point to
center of circle corresponding to cascade airfoil

total arc length of airfoil
distance between successive airfoils in cascade
arc-length parameter corresponding to z
arc-length parameter corresponding to ZO
magnitude of uniform or mean stream velocity in air-

foiI or cascade plane (fig. I)
magnitude of uniform stream velocity in circle plane
x-component of uniform or mean stream velocity T’
resultant local mean stream z-component of velocity 1“
y-component of uniform or mean stream velocity 1’
local velocity on circle corresponding to isolated

airfoil
Iocal velocity on circle corresponding to airfoil in

cascade
velocity inducecl by vortices in region j2>0
complex potential function, p.+ ix
complex velocity of mean stream for airfoil in cascade

complex velocity of uniform stream for isolated airfoil,
r.–ivv

reaI part of z
coordinates of point about which airfoil is rotated

(centroid of vortex distribution for cascade airfoils)
imaginary part of z
coordinate of point where stream function is com-

puted, x+iy
coordinate of point where vortex is located, xO+iyO
angle of inclination of uniform stream velocity to

x-axis
angle through which airfoil is rotated
circulation about zirfoil
vor~ex strength per unit arc length at ZO
central angle of circle
angIe of stagnation point

leading edge of airfoil
angle of stagnation point

trailing edge of airfoil
214

on circle corresponding to

on circIe. corresponding to

c

angle of inclination of mean flow to normal to mscade
axis (fig. 1)

velocity potential on airfoil, li’[w(z) ]
Pi, PE, values of P at points ~, B, 0, ~, respectively, where
PC,pD curve of P(so) intersectsjz (s, SO)= O (See fig. 5,j
v. velocity potential on circle corresponding to isolated

airfoil
Pc.c velocity potential on circle corresponding to airfoil in

cascade
Vmin velocity pobmtial at leading edge of airfoil

+ stream function, .l[w(z)]

*. stream function of mean stream of cmcmlc flow

$. stream function of uniform stream flowing tibout
isolzted airfoil

7 mean value of stream funciion over airfoi~

A+ variation of stream function, +—~
Subscripts 1 ancl 2 when apprnded to w’, T’, and I‘= indicak
inflow and discharge values, respectively.
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